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Abstract

Hydrofluoric acid (HF) is commonly used in geological and paleontological research

to extract organic fossils for morphological and chemical studies. However, during

HF treatment, organic matter can also be altered, which raises concerns that

HF‐treated organic matter may not be representative of the original organic matter.

To provide reference data for protein studies on fossils, herein, we use Fourier

transform infrared (FTIR) spectroscopy to investigate the effect of HF (21.3M)

treatment on keratins, with treatment durations ranging from 2 to 48 h. Results

show that the FTIR spectra of HF‐treated samples are overall similar to that of the

untreated sample, while curve fitting shows that HF treatment has led to alteration

of the secondary structure in all the HF‐treated samples and the effect is time‐

dependent. The 2‐ and 4‐h treatment mainly reduced the content of the random

coils, α‐helix, and intermolecular β‐sheet. From 8h onwards, the content of random

coils greatly increased at the expense of other structures. Our results imply that for

protein detection in fossils using FTIR spectroscopy, the negative effect of HF

treatment is not substantial, as the bands characteristic of proteins, that is, amide A,

amide B, amide I, amide II, and amide III, are still present after the 48‐h treatment. If

the target is a secondary structure, the effect of HF treatment should be considered.

When HF treatment is necessary, limiting the treatment duration to less than 4h may

be a choice.
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1 | INTRODUCTION

Integrating data from evolutionary developmental biology and

paleontology is important to understand the evolution of organisms

(Chipman & Edgecombe, 2019; Hall, 2002; Wu, Yan, et al., 2018).

Data from both fields contribute to the building of a sound

phylogenetic framework within which we can infer the evolution of

specific characters. Paleontology can calibrate the timescale of

evolution and provide evidence of extinct forms and the sequence

of evolutionary events, while evolutionary developmental biology can

provide insight into the mechanisms underlying characters’ evolution

(Chipman & Edgecombe, 2019; Hall, 2002; Wu, Yan, et al., 2018).

Moreover, mounting evidence suggests that fossils can provide

molecular information in addition to morphological information about

extinct organisms (Briggs & Summons, 2014).

However, the small amount of the preserved organic matter and

the interference of minerals challenge the analysis of the molecular

information preserved in fossils (Dallongeville et al., 2016). Conse-

quently, isolation procedures have often been used before applying

analytical techniques (Delarue et al., 2021). Hydrofluoric acid (HF) is

commonly used as a reagent to remove silicate minerals (Craig &

Collins, 2000; Oonk et al., 2012; Riding & Kyffin‐Hughes, 2004).

J Exp Zool B Mol Dev Evol. 2022;1–8. wileyonlinelibrary.com/journal/jezb © 2022 Wiley Periodicals LLC. | 1

http://orcid.org/0000-0003-3922-5218
http://orcid.org/0000-0001-5645-1466
mailto:panyanhong@nju.edu.cn
https://wileyonlinelibrary.com/journal/jezb


However, there is evidence that HF can alter the organic matter

during demineralization (Delarue et al., 2021). Studies from soil

science showed that treatment of soil samples with HF can lead to

the loss of C and N, and suggested that proteinaceous material may

be lost (Gonçalves et al., 2003; Rumpel et al., 2006; Sanderman et al.,

2017; Schmidt & Gleixner, 2005). Understanding the effect of HF

treatment on proteins with experiments is crucial to determine

whether to use HF treatment in studies and the optimal treatment

duration.

Among biomolecules, DNA and RNA have the lowest preserva-

tion potential in fossils (Briggs & Summons, 2014). By contrast,

proteins, also carrying phylogenetic information, are more stable

(Briggs & Summons, 2014; Demarchi et al., 2016). Molecular and

developmental studies have proposed many hypotheses on the

evolution of structures present in living organisms, which remain to

be tested with direct evidence from fossils, for example, hypotheses

on the relationship among reptilian scales, avian scales, and avian

feathers (e.g., Alibardi & Sawyer, 2002; Dhouailly, 2009; Wu, Lai,

et al., 2018).

The abundant fossil feathers discovered in the last several decades

have provided valuable information on the early evolution of feathers,

powered flight, and sexual selection (e.g., Clarke, 2013; Feo et al., 2015;

Wang et al., 2021; Xu & Guo, 2009; Xu et al., 2014; Zheng et al., 2013).

Modern feathers are predominately constructed of β‐keratins (also

referred to as corneous β‐proteins), with a small amount of α‐keratins

(Alibardi, 2013, 2017). β‐Keratins are characterized by a central β‐sheet

region, while α‐keratins have a central α‐helical domain (Alibardi, 2017;

Calvaresi et al., 2016; Fraser & Parry, 2009, 2014). Recent studies

indicated that keratins may persist into deep time, largely owing to the

extensive cross‐linking by disulfide bonds and the numerous hydropho-

bic residues (Pan et al., 2016, 2019; Schweitzer et al., 2018; Yin et al.,

2013). Nevertheless, several studies challenged the preservation of

keratins in deep time, arguing that the immunological methods used

therein to identify keratins in fossils are prone to false positives (Saitta &

Vinther, 2019; Saitta et al., 2017, 2018).

Here, we chose keratins as a case study to evaluate the effect of

HF treatment on proteins. We used white turkey feathers in the

experiments. We characterized the alteration of keratins using

Fourier transform infrared (FTIR) spectroscopy, a well‐established

technique for determining the secondary structure of peptides and

proteins (Barth, 2007; Byler & Susi, 1986; Kong & Yu, 2007), which

has been recently applied to characterize proteins in fossils (e.g.,

Boatman et al., 2019; Jiang et al., 2017; Lee et al., 2017; Lindgren

et al., 2011; Manning et al., 2009).

2 | MATERIALS AND METHODS

Five small pieces of samples (about 1 cm2) were cut from a white

turkey flight feather, and each was immersed in 1ml of 21.3M HF.

The treatment durations were 2, 4, 8, 24, and 48 h, respectively. After

treatment, the samples were rinsed three times with deionized water.

These samples are referred to as HF2h, HF4h, HF8h, HF24h, and

HF48h, respectively. Before FTIR analysis, the samples were dried

overnight at 45°C. An untreated piece from the same feather was

used as a control.

FTIR analysis was performed using a Nicolet iS50 FTIR spectrome-

ter with a Continuμm microscope at the Nanjing University. The

instrumental setup included an aperture size of 80 × 80μm2, a spectral

resolution of 4 cm−1, a wavenumber range of 7000–650 cm−1, and 128

scans. Two to three spectra were collected for each sample and the

averaged spectrum was used in subsequent analyses.

To evaluate the changes in the secondary structure of keratins,

curve fitting of the amide I region (1700–1600 cm−1) was performed.

Before curve fitting, a straight baseline passing the ordinates at 1700

and 1600 cm−1 was subtracted. The curve fitting was performed

using the Fityk software (Wojdyr, 2010). Gaussian functions were

used to fit the data, with initial parameters of the functions set using

the peak‐detection algorithm in Fityk.

3 | RESULTS

3.1 | Comparison of FTIR spectra

The FTIR spectra of the untreated and HF‐treated white turkey

feather samples are overall similar (Figure 1), and show bands

characteristic of proteins, that is, amide A at around 3288 cm−1

(NH stretching), amide B at around 3077 cm−1 (NH stretching, an

overtone of amide II), amide I at around 1637 cm−1 (C =O stretching,

CN stretching, CCN deformation, NH bending), amide II at around

1537 cm−1 (NH bending, CN stretching, CO bending, CC stretching,

NC stretching), and amide III at 1231 cm−1 (NH bending, CN

stretching, CO bending, CC stretching) (Barth, 2007; Kong & Yu,

2007; H. Yang et al., 2015).

The bands at 2961, 2931, 2875, and 2851 cm−1 are assignable to

CH asymmetric stretching of –CH3, CH asymmetric stretching of

–CH2, CH symmetric stretching of –CH3, and CH symmetric

stretching of –CH2, respectively (Dumas & Miller, 2003). They can

result from lipids in the feathers and amino acid side chain vibrations

(Esparza et al., 2017; Forgács et al., 2013).

3.2 | Curve fitting of the amide I region
(1700–1600 cm−1)

The amide I region can be well fit by six Gaussian functions

(Figure 2 and Table 1). In the untreated sample, the six functions are

centered at 1619, 1637, 1658, 1673, 1686, and 1694 cm−1,

respectively. The bands at 1637 and 1694 cm−1 can be assigned to

β‐sheet (Dong et al., 1992; Goormaghtigh et al., 1994a). The bands at

1673 and 1684 cm−1 are assignable to β‐turn (Dong et al., 1990;

Goormaghtigh et al., 1994b). The band at 1619 cm−1 is assigned to an

intermolecular β‐sheet resulting from aggregation (Hu et al., 2006;

Quiquampoix et al., 1995). The band at 1658 cm−1 can be due to

random coils and α‐helix (Goormaghtigh et al., 1994b). As feathers
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F IGURE 1 Comparison of the FTIR spectra of untreated and HF‐treated feather samples. ν, stretching vibration; as, asymmetric;
FTIR, Fourier transform infrared; HF, hydrofluoric acid; s, symmetric.

F IGURE 2 Curve fitting of the amide I region of the FTIR spectra of untreated and HF‐treated white turkey feather samples. FTIR, Fourier
transform infrared; HF, hydrofluoric acid.
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contain only a small amount of α‐keratins (Alibardi, 2013), this band is

likely due mainly to random coils.

The positions of these bands did not change much (within

2 cm−1) in the samples HF2h and HF4h (Table 1). In sample HF8h, the

low component of β‐sheet (1637 cm−1 in the untreated sample)

downshifted to 1633 cm−1. The intermolecular β‐sheet downshifted

to 1615 cm−1. The low component of β‐turn upshifted to 1677 cm−1.

The same trend was also observed in HF24h and HF48h.

The intensities of these bands were more variable than their

positions, which reflects the changes in the secondary structure of

keratins (Figure 3). The content of random coils decreased in HF2h and

HF4h, but greatly increased in the other HF‐treated samples. This trend

indicates that HF treatment first led to the breakage of original random

coils and α‐helix, but with the increase of treatment duration, new

random coils formed. The content of the intermolecular β‐sheet slightly

decreased in the HF‐treated samples, indicating the aggregated

structure was partly dissolved. The content of β‐sheet is increased in

HF2h and HF4h, but decreased in the other samples. The content of

β‐turn is increased in HF2h, but decreased in the other samples.

The increases in the contents of β‐sheet and β‐turn are likely because

these structures are more stable than other structures. That is, the

relative decreases of random coils, α‐helix, and intermolecular β‐sheet

led to the relative increases of β‐sheet and β‐turn in these samples.

4 | DISCUSSION

4.1 | Alteration of keratins following HF treatment

Our results show HF treatment led to the alteration of the secondary

structure of keratins in all the HF‐treated samples, and the effect of

HF treatment is time‐dependent. The 2‐ and 4‐h treatment appears

to have mainly affected the random coils, α‐helix, and intermolecular

β‐sheet. From 8 h onwards, the content of random coils greatly

increased at the expense of other structures. The alteration of the

secondary structure indicates that HF treatment partially denatured

the keratins. Nevertheless, the HF treatment did not affect the

identification of the amide bands characteristic of proteins. The

methods applied to protein remain in paleontology from detection to

identification (Dallongeville et al., 2016), almost all target the amides

of proteins. Therefore, we can conclude that as long as the target of

further analysis is the amides of proteins, the negative effect of HF

treatment could be beneath discussion.

4.2 | Implications for HF treatment on fossils

To date, one major application of FTIR spectroscopy in protein study

on fossils is to detect proteins based on the presence of amide bands,

especially the amide I and amide II bands (Bobroff et al., 2016; Jiang

et al., 2017; Lee et al., 2017; Manning et al., 2009; Reisz et al., 2013;

Z. Yang et al., 2019). Our results indicate that the negative effect of

HF treatment on this application is negligible.

The secondary structure of keratins is important to understand

the molecular evolution of skin appendages, for example, scales and

feathers. Evo‐Devo studies showed that avian reticulate scales on the

plantar surface of toes consist only of α‐keratins, while other avian

scales—including scutate scales, scutellate scales, and interstitial

scales—and reptilian scales consist of both α‐keratins and β‐keratins

(Sawyer et al., 1986; Toni et al., 2007). Moreover, reptilian scales and

avian scales, except for reticulate scales, develop from an anatomical

placode, which suggests that avian reticulate scales may be derived

structures. Scales resembling avian reticulate scales in morphology

have been found in multiple non‐avian dinosaurs and early birds (e.g.,

Cuesta et al., 2015; Godefroit et al., 2020; Hendrickx et al., 2022;

Xing et al., 2017). To characterize the secondary structure of keratins

preserved in fossil scales can help answer when avian reticulate

scales evolved their peculiar composition.

Based on the development of modern feathers, Prum (1999)

proposed a five‐staged feather evolution model. Paleontological studies

on feathers and feather‐like integumentary structures associated with

theropods identified not only structures consistent with these five

TABLE 1 Assignment of the components of the amide I band to
secondary structure

Untreated HF2h HF4h HF8h HF24h HF48h Assignment

1619 1617 1617 1615 1616 1615 Intermolecular

β‐sheet

1637 1637 1636 1633 1635 1632 β‐Sheet

1658 1657 1658 1659 1659 1655 Random

coils + α‐helix

1673 1671 1673 1677 1677 1675 β‐Turn

1686 1685 1686 1687 1687 1686 β‐Turn

1694 1693 1693 1694 1694 1693 β‐Sheet

F IGURE 3 Changes in the secondary structure of keratins in the
white turkey feather samples with the duration of HF treatment.
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stages but also structures that cannot be interpreted using extant

feather morphogenesis, which greatly improved our understanding of

the morphological evolution of feathers (Lin et al., 2020; Xu & Guo,

2009; Xu et al., 2014). Recently, pennaceous feathers of the Jurassic

paravian dinosaur Anchiornis were found to be dominated by α‐keratins

rather than by β‐keratins as in modern feathers, which suggested that

the molecular composition continued to evolve after the appearance of

pennaceous feathers to obtain the physical and mechanical properties

for flight (Pan et al., 2019). However, this hypothesis has been

challenged by recent studies arguing that the immunological methods

used therein to identify keratins in fossils are prone to false positives

(Saitta & Vinther, 2019; Saitta et al., 2017, 2018; but see Schweitzer

et al., 2019). FTIR spectroscopy could be a viable technique to

independently test this hypothesis by characterizing the secondary

structure of keratins preserved in fossil feathers.

Despite the potential to address such evolutionary questions, the

application of FTIR spectroscopy in determining the secondary structure

of protein remains in fossils is still limited (Lindgren et al., 2011), largely

due to the poor ratio between organic and inorganic matter in fossils. To

determine the secondary structure of proteins using FTIR spectroscopy,

data treatment methods, such as curve‐fitting and Fourier self‐

deconvolution, are needed, which requires that the target matter is

not at the trace level (Bobroff et al., 2016). Isolating organic matter may

be a means to solve the problem. Unfortunately, our results indicate that

HF treatment will likely alter the secondary structure of proteins if

preserved, although it can concentrate the organic matter. Nevertheless,

the results on the alteration of the secondary structure with treatment

duration suggest that when HF treatment is necessary, limiting the

treatment duration to less than 4h may be a choice.

Our results also have implications for protein identification based

on immunological methods, as alteration of the secondary structure can

damage some conformational epitopes (Goding, 1996). In the Digestion

and Capture Immunoassay, HF (4M) is used to digest the minerals and

release mineral‐bound proteins (Craig & Collins, 2000). In this protocol,

the digestion was conducted at a low temperature (4°C) to limit the

damage on the epitopes, but the signal deteriorated when being

digested for more than 15 h (Craig & Collins, 2000). The application of in

situ immunohistochemistry involves the preparation of ultrathin sections

(Lindgren et al., 2018; Pan et al., 2016, 2019; Schweitzer et al., 2016).

Without demineralization, the cut ultrathin sections may easily

disintegrate. But with the increase in the duration of HF treatment,

more and more conformational epitopes will likely be damaged. Hence,

it is also necessary to limit the duration of the HF treatment when

applying in situ immunohistochemistry.

5 | CONCLUSIONS

Our results show that the FTIR spectra of all HF‐treated white turkey

feather samples are overall similar to that of the untreated sample, with

the identification of amide bands characteristic of proteins not affected

by HF treatment. Detailed comparison using curve fitting shows that

alteration of the secondary structure has occurred to all the HF‐treated

samples, with major alterations occurring when treatment duration

exceeds 4 h, as indicated by the abrupt increase of the content of the

random coils. Our results suggest that when using FTIR spectroscopy to

detect protein residues based on the presence of amide bands, the

negative effect of HF treatment could be little. But if the target is to

address the molecular evolution of specific structures—for example,

feathers and scales—based on the secondary structure of proteins

preserved in fossils, the damage to the secondary structure by HF

treatment should be considered. The trend over treatment duration of

the alteration suggests when HF treatment is necessary, limiting the

treatment duration to less than 4h may be a choice. Further

paleontological studies combining HF treatment with analytical tech-

niques such as FTIR spectroscopy and mass spectrometry will help to

resolve the debates on the preservation of proteins in deep time and

provide more information on the evolution of organisms.
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